专注立式长轴泵/长轴液下泵/筒袋式凝结水泵/H系列直角齿轮箱产品价格适中,各种材质诚信,多年生产经验     英文版  | 手机版  | 简体/繁體
全国咨询热线(微信同号): 18507312158 15111351988
新闻资讯
扫码关注微信
了解新动态
咨询热线:18507312158
你的位置:首页 >> 新闻资讯 >> 公司新闻  公司新闻

垃圾渗滤液MBR处理系统及相关渗滤液泵设计要点

时间:2020/9/22 点击:

信息摘要:垃圾渗滤液MBR处理系统及相关渗滤液泵设计要点...

垃圾渗滤液MBR处理系统及相关渗滤液泵设计要点

无论是垃圾填埋场还是垃圾焚烧厂,渗滤液的特点是水量水质受季节、气候等因素的影响大,成分复杂、污染物浓度高、可生化性差,渗滤液处理工艺大多采用“预处理+生化+深度处理”工艺,其中生化处理普遍采用MBR工艺,是整个渗滤液处理系统的核心,是出水能否达标排放的重要保障。

 

垃圾渗滤液MBR处理系统设计要点如下:

1MBR生化处理系统的设计应以COD进行计算;

2)规模较小时可以采用一条线,规模较大时需设置二条线;

 3)渗滤液处理出水对总氮无要求时采用单级生物脱氮,出水对总氮有要求时采用二级生物脱氮;

4)合理选取水温、泥龄、污泥浓度、剩余污泥产率及单位耗氧量等设计参数,通过计算确定混合液回流比;

5)外加碳源可以采用甲醇、乙酸钠、葡萄糖等,分别投加在缺氧池和后置反硝化池;

6)通过控制生物池内水的流态、利用空气管道控制曝气区域、控制膜分离和污水冷却系统回流位置等技术措施,可以取得良好的处理效果。

 

一、用COD进行设计计算

 

       大部分的生化处理系计是按BOD进行设计计算的,但对垃圾渗滤液而言,COD浓度远远高于BOD浓度,二者的比值COD/BOD>2.2,此种情况下如果仍按BOD进行设计,会存在较大误差,严重影响处理效果,因此垃圾渗滤液MBR生化处理系统应以COD进行设计计算,实际运行结果证明,这种计算方式是符合实际情况的、是合理的。

 

二、一条线和二条线的设定原则设置

 

       许多垃圾渗滤液处理工程,生化处理部分往往只设置一条线,检修、维护时整个系统必须停止运行,对整个渗滤液处理系统影响很大,而且恢复运行难度也很大。因此为保证渗滤液处理系统能够连续稳定运行,同时考虑到渗滤液处理规模大小不一,原则上规模较小时可考虑设置一条线,规模较大时可应采用二条线,使系统的运行更加可靠、灵活和合理,把由于检修维护的影响降到最低。

 

       根据渗滤液处理工程的特点,工程规模Q200m3/d的渗滤液处理工程可以按一条线进行设计,工程规模Q<400m3/d的渗滤液处理工程,优先考虑采用二条线,如果现场条件不允许也可采用一条线,工程规模Q400m3/d的渗滤液处理工程应采用二条线。

 

三、单级生物脱氮和二级生物脱氮的适用条件

 

       所谓单级生物脱氮系统,就是在系统内设置缺氧池和好氧池,利用微生物的硝化和反硝化反应达到去除总氮的目的,对于进水氨氮浓度较低或排放标准对总氮没有要求的项目,采用单级生物脱氮即可满足要求。

 

 

事实上经过单级生物脱氮处理后,出水中仍会含有一定量的硝酸盐,尤其是进水氨氮浓度高的情况下,出水中硝酸盐的含量会更高,总氮也相应偏高。在出水对总氮有严格要求的地区,为保证出水总氮达标,在单级生物脱氮后再增设后置反硝化池和后曝气池,亦即二级生物脱氮系统,通过投加外加碳源,利用微生物的硝化和反硝化反应进一步去除剩余的硝酸盐,进而达到提高总氮去除率的目的。

 

垃圾渗滤液原液中氨氮浓度很高,一般介于2000mg/L~3000mg/L之间,也有高达3000mg/L~4000mg/L,一些排放标准要求出水总氮低于40mg/L,总氮去除率高达98%以上,如此高的去除率对MBR系统提出了更高的要求,单级生物脱氮系统很难达标,必须采用二级生物脱氮方能满足要求。

 

       对于垃圾渗滤液而言,排放标准对总氮没有要求的项目,生化处理系统采用单级生物脱氮,如果排放标准对总氮有严格的要求,应采用二级生物脱氮处理系统,通过控制硝化和反硝化反应的完全程度来控制出水中的总氮。

 

四、主要设计参数

 

       4.1主要设计参数的选取

 

       生化处理系统设计参数取值见表1

 

 

       4.2混合液回流比的计算

 

       垃圾渗滤液进水氨氮浓度高,排放标准对氨氮和总氮的要求非常严格,混合液回流比对总氮的去除率影响较大,混合液回流比增大,TN去除率也增大,合理确定混合液回流比,才能达到良好的脱氮效果。实际工程设计中,许多工程设计混合液回流比不能满足脱氮要求,出水总氮超标现象非常普遍。

 

      反硝化所需的硝酸盐由污泥回流和混合液回流提供,反硝化率用回流比控制,它们之间的关系为:

 

 

       反硝化率fde按下式计算:

 

 

    需硝化的氨氮量按下式计算:

 

       4Nht=24Q[N-0.05(S0-Se)]×10-3(kg/d)

 

       MBR系统采用外置式超滤膜,出水SS接近于零,其含氮量亦按零考虑。

 

       反硝化的硝酸盐量按下式计算:

 

       5 NOt=24QNO×10-3(kg/d)

 

       式中需反硝化的硝态氮浓度NO按下式计算:

 

       6NO=N-0.05(S0-Se)-Ne

 

五、外部碳源投加系统

 

       5.1外部碳源的种类

 

       目前普遍使用的外部碳源有甲醇、乙烷、乙酸、乙酸钠、葡萄糖等,各种碳源各有优缺点,合理选择外部碳源对脱氮效果、运行成本等影响很大。

 

       不同碳源类型对系统的脱氮性能影响存在差异,在实际工程应用中应根据工程的具体情况合理选用外部碳源,综合分析并参考以往的工程经验,外部碳源宜优先考虑采用葡萄糖。

 

       5.2外部碳源投加位置

 

       渗滤液原液碳源极度缺失的情况下,如果不投加外部碳源,会导致生化处理系统内硝酸盐过度积累、碱度缺失,轻则抑制微生物的活性,重则导致系统崩溃,此种情况下为确保系统稳定运行,应在缺氧池和后置反硝化池都投加外部碳源。

 

       如果碳源不是很缺乏,硝酸盐积累现象也不是很严重,系统内能维持正常的硝化反硝化反应,此时宜在后置反硝化池内投加外部碳源,可以节省投加量,从而达到降低运行成本的目的。

 

       国内大部分渗滤液处理工程,在后置反硝化池投加新鲜渗滤液,确实可以达到节省运行成本的目的;但由于渗滤液原液含有高浓度的氨氮,而后曝气池未设置内回流系统,导致出水总氮增加,因此在后置反硝化池应投加甲醇或乙酸钠等不含“氮”的外部碳源,而不应投加新鲜渗滤液。

 

       5.3外加碳源对生化处理系统的影响

 

       如果渗滤液进水C/N比严重失调,生化处理系统长期靠投加外部碳源维持运行,这种情况与单纯处理垃圾渗滤液有很大不同。无论采用何种碳源,其反应速度均远远高于渗滤液原液,水力停留时间也相应很短,因此池容积也较小。

 

       如果池容积过大、水力停留时间过长,异养好氧反硝化菌得不到足够的营养物质.因而利用自身体内的原生物质进行内源呼吸,进而降低活性污泥的活性,影响处理效果。因此在靠投加外部碳源维持运行的渗滤液生化处理系统,其生物反应池容积不能过大,应通过计算合理确定。

 

六、工程设计技术措施

 

       6.1水流形态的控制

 

       许多生物池的设计对水的流态缺少控制,极易发生短流,减少实际水力停留时间,降低整个系统的处理效果。垃圾渗滤液处理生物池内的混合液悬浮固体浓度一般控制住12g/L~15g/L,实际运行过程中有时高达20g/L~30g/L,如此高的污泥浓度,在水流发生短流的情况下,极易发生污泥沉积,从而降低活性污泥的活性,导致处理效率下降。在工程设计中,尤其是大规模的渗滤液处理工程,应在生物池内采取必要措施,控制生物池内水的流态,避免污泥沉积并提高处理效率。

 

       6.2污水冷却系统回流管的设置

 

       由于高浓度污水在生化反应过程中会释放出大量的热能,同时由于部分电能转化成热能的缘故,垃圾渗滤液处理生物池内会保持较高的温度,过高的水温会抑制微生物的活性,严重时会使生化处理系统瘫痪。因此垃圾渗滤液生化处理均设有污水冷却系统,用污水泵抽取生物池内的混合液进入换热器,与冷却水在换热器内进行热交换,降温后混合液再回到生物池内,从而达到降低生物池内水温的目的。

 

       对于设有污水冷却设施的生化系统,由好氧池末端取水,将冷却后的污水回流到缺氧池进水端,可以同时起到混合液回流的作用,提高脱氮效果,也可以取代内回流泵节省能耗,但实际操作中要考虑冷却系统间歇运行的影响。

 

 

       

      6.3膜分离系统回流管的设置

 

       在许多垃圾渗滤液处理工程中,MBR系统采用管式膜超滤分离系统,超滤进水泵由好氧池末端取水,进入管式膜浓缩又回流到生物池内。将含有硝酸盐的超滤回流管接至缺氧池进水端,同样可以起到混合液内回流的作用,提高脱氮效率、节省能耗。

 

 

垃圾渗滤液工艺解析及相关渗滤液泵


 
 

标签: 渗滤液泵,垃圾渗滤液泵